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REVIEW &  INTERPRETATION

Maize (Zea mays L.) is the world’s most widely grown crop 
with an annual global production of 826 million t in 

2008 (available at http://faostat.fao.org/site/567/DesktopDefault.
aspx?PageID=567#ancor [verifi ed 8 Dec. 2010]). There are 14 
countries where maize is estimated to provide 25 to 50% of the 
total human energy consumption and a further 27 countries where 
maize provides 10 to 25% of the total energy consumption (FAO, 
2009a). Maize is also an important source of cooking oil, biofuel, 
and animal feed. By 2050, the predicted 9 billion people in the 
world will require 70% more food than today’s population, and a 
large proportion of the increased demand will come from devel-
oping countries (FAO, 2009b). It is estimated that more than half 
of the increased demand for cereals as a whole will come from 
maize farmers and consumers. The necessary increase in maize 
production will require substantial changes in agronomic practices 
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ABSTRACT

Association mapping through linkage disequilib-

rium (LD) analysis is a powerful tool for the dis-

section of complex agronomic traits and for the 

identifi cation of alleles that can contribute to the 

enhancement of a target trait. With the devel-

opments of high throughput genotyping tech-

niques and advanced statistical approaches as 

well as the assembling and characterization of 

multiple association mapping panels, maize has 

become the model crop for association analy-

sis. In this paper, we summarize progress in 

maize association mapping and the impacts of 

genetic diversity, rate of LD decay, population 

size, and population structure. We also review 

the use of candidate genes and gene-based 

markers in maize association mapping stud-

ies that has generated particularly promising 

results. In addition, we examine recent develop-

ments in genome-wide genotyping techniques 

that promise to improve the power of associa-

tion mapping and signifi cantly refi ne our under-
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quantitative traits. The new challenges and 

opportunities associated with genome-wide 

analysis studies are discussed. In conclusion, 

we review the current and future impacts of 

association mapping on maize improvement 

along with the potential benefi ts for poor people 

in developing countries who are dependent on 

this crop for their food security and livelihoods.
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and methods of genetic improvement. However, there is 
a danger that these improved yields will come at a high 
environmental cost due to overapplication of synthetic 
fertilizers, which cannot be sustained (Robertson and 
Vitousek, 2009). Fortunately, maize is also an important 
model organism for cytogenetics, genetics, genomics, and 
functional genomics studies (Strable and Scanlon, 2009). 
Thus, there is a tremendous innovation stream for maize 
breeders to utilize in their attempts to substantially increase 
maize productivity in an environmentally sensitive way.

The technology developments of the “Green Revolu-
tion” (including irrigation, fertilizer, and new cultivars) led 
to more than a doubling of global maize, wheat (Triticum 
aestivum L.), and rice (Oryza sativa L.) production between 
1966 and 2000 (Khush, 2001). Maize exceeded this trend 
in most areas (except Africa) largely due to the additional 
benefi ts of harnessing heterosis in hybrids and the improved 
performance and adaptation of the inbred parents (Fig. 1). 
However, the rate of yield improvement is not in line with 
current and predicted increases in demand. The situation 
is especially severe in Africa, which did not benefi t from 
yield increases from Green Revolution varieties (Ejeta, 
2010). Consequently, average maize yields in Africa have 
only increased by about 0.5 t ha–1 over the past half century 
compared to a 6 t ha–1 increase during the same period in the 
United States (Fig. 1). As maize is a primary staple food in 
many African countries, increasing maize productivity is a 
key priority for African agricultural development to reduce 
poverty and hunger in this region and thus a cornerstone 
of the proposed African Green Revolution (Ejeta, 2010). 
However, the challenge to successfully replicate the Asian 
Green Revolution in Africa is confounded by a multitude 
of environmental stresses that are becoming more dynamic 
due to climate change and thus create a highly diffi  cult target 
environment for maize breeders and farmers (Collier et al., 

2008). Thus, where the Asian Green Revolution was driven 
by a few oligogenic traits, the African Green Revolution 
will require products that eff ectively combine many com-
plex traits into easily disseminated new maize varieties. For-
tunately, the new techniques of applied genomics research 
and molecular breeding are ready to meet these demands 
through a knowledge-led approach to maize breeding.

Quantitative trait locus (QTL) mapping is a powerful 
and well-established tool for studying the genetic basis of 
complex quantitative traits in plants and animals. More than 
10,000 articles published during the last three decades on 
QTL mapping in diff erent species are listed in the Pubmed 
database (available at http://www.ncbi.nlm.nih.gov/pubmed 
[verifi ed 6 Dec. 2010]). Of these, more than 360 articles 
relate to reports of over 1000 QTLs associated with various 
traits in maize. Despite the surfeit of mapping publications, 
to date only a few QTLs have been identifi ed at the gene 
level through cloning (Moose and Mumm, 2008). This is 
mainly because map-based cloning of QTLs is a very time 
consuming and expensive process in maize and other crop 
species. Association mapping has been widely used to study 
the genetic basis of complex traits in human and animal sys-
tems and is a very effi  cient and eff ective method for confi rm-
ing candidate genes or for identifying new genes (Altshuler 
et al., 2008; Hunter and Crawford, 2008). Association map-
ping is now being increasingly used in a wide range of plants 
(Rafalski, 2010), where it appears to be more powerful than 
in humans or animals (Zhu et al., 2008). Unlike linkage 
mapping, association mapping can explore all the recombi-
nation events and mutations in a given population and with 
a higher resolution (Yu and Buckler, 2006). However, asso-
ciation mapping has a lower power to detect rare alleles in a 
population, even those with large eff ects, than linkage map-
ping (Visscher, 2008). In this review we discuss recent prog-
ress and the particular strengths of association mapping in 

Figure 1. Average yield of maize during 1961 through 2008 for the United States and China compared to averages across Africa and the 

whole world (data from FAO in 2010; http://faostat.fao.org [verifi ed 6 Dec. 2010]).
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It has been estimated that there is a polymorphism 
between two diverse lines every 44 bp throughout the maize 
genomic sequence (Gore et al., 2009) and that the divergence 
between two maize inbred lines is even greater than between 
human and chimpanzees, which diverged as independent 
species 3.5 million years ago (Buckler and Stevens, 2005). 
Maize has a moderately sized genome of 2300 Mbp, pre-
dicted to contain over 32,000 genes (Schnable et al., 2009). 
Several million polymorphisms including single nucleo-
tide polymorphisms (SNPs) and indels have been identifi ed 
through comparison of the sequences of 27 diverse inbred 
lines (Gore et al., 2009). There are typically multiple poly-
morphisms within each gene, leading to a higher frequency 
of amino acid diff erences than in most plants, which translates 
to the high levels of phenotypic diff erences observed at the 
whole plant level (Ching et al., 2002; Rafalski, 2010). Thus, 
there are multiple haplotypes (combinations of alleles and/or 
SNPs within a gene) within each gene that allow association 
mapping of almost any trait, providing the germplasm panel 
captures a large proportion of the total diversity available for 
that trait (Li and Jiang, 2005; Zhu et al., 2008).

Linkage Disequilibrium is an Important 
Factor in Association Mapping
Linkage disequilibrium (LD) is the nonrandom association 
in a population of alleles at two or more loci. The term was 
originally defi ned in relation to the population of alleles 
that reside on the same chromosome. Although LD is a 
population-based phenomenon (rather than an individual 
genome-based phenomenon), it is generally observed that 
there tends to be a higher LD between alleles that are 

maize and the requirements for its eff ective use in enhancing 
maize genetic improvement.

Abundant Genetic Diversity 
in the Maize Gene Pool Improves 
the Power of Association Mapping
Genetic mapping via linkage or association analyses cannot 
be performed in the absence of measurable polymorphisms, 
so abundant diff erences at the phenotypic level and a high 
density of polymorphisms at the DNA sequence level are 
essential. Maize shows an amazing degree of phenotypic 
diversity: plant height can range from 0.5 to 5 m at matu-
rity; fl owering dates vary from 2 to 11 mo after planting; 
the ear and kernels vary in color, length, size, shape, etc. 
(Sprague and Dudley, 1988; Fig. 2). For nearly every trait 
of economic or agronomic importance, there are measur-
able phenotypic diff erences within the global maize germ-
plasm pool. The tremendous allelic diversity underlying 
this astonishing phenotypic variation in maize has been 
exploited and used throughout history, fi rst via farmer selec-
tion and more recently in breeding programs by geneticists 
and breeders. During the past 10,000 yr since domestication 
from its wild relative teosinte (Zea mays subsp. parviglumis), 
maize has retained and further generated vast quantities of 
allelic diversity and genes via an active system of transpos-
able elements. In addition, gene fl ow from teosinte and 
between maize populations (enhanced by the outcrossing 
nature of maize), farmer and natural selection (especially 
following introduction into new growing regions), recom-
bination, drift, and mutation have all contributed to the 
diversity seen in maize germplasm (Walbot, 2009).

Figure 2. Examples of the range of phenotypic variation in maize germplasm held in the CIMMYT genebank (photo provided by Dr. 

Suketoshi Taba, CIMMYT).
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located more closely together (because of their lower prob-
ability of being separated from one another by recombina-
tion). Thus, the random association between alleles might 
be reduced by linkage thereby creating the so-called dis-
equilibrium. However, with the increasing use of genome-
wide association (GWA) studies the term is now being used 
in a broader context by some researchers to also encompass 
alleles across chromosomes that show some association. In 
collections of commercial maize germplasm the rate of LD 
decay (the rate of return to random association between 
two given alleles) is relatively slow. However, decay of LD 
between two polymorphic sites in diverse maize germ-
plasm collections occurs very rapidly within a few kilobase 
pairs due to the high rate of recombination in this material 
(Tenaillon et al., 2001; Gore et al., 2009; Yan et al., 2009). 
Both linkage mapping and association mapping studies aim 
to identify functional sequence variants (alleles) encod-
ing changes in phenotype or markers suffi  ciently closely 
linked to them to allow breeders to routinely select and 
manipulate these alleles in diverse populations. In tradi-
tional linkage mapping studies, segregating individuals are 
genotyped with hundreds or thousands of random mark-
ers, and there is a low probability that these markers will 
include the functional DNA variants themselves or even 
markers closely linked to them.

Besides physical distance on the chromosome, many 
factors aff ect the breakdown of LD, including genetic drift, 
natural and artifi cial selection, mating system, and admix-
ture of diff erent populations (Flint-Garcia et al., 2003; Gaut 
and Long, 2003; Yu and Buckler, 2006). Several statistical 
parameters can be used to estimate the extent of LD (Hed-
rick, 1987), most commonly r2, which estimates the corre-
lation between allelic states of two given polymorphic loci. 
Based on multiple case studies in maize, LD decay ranges 
from less than 1 kbp (Tenaillon et al., 2001) in landraces to 
more than 100 kbp in elite (more closely related) breeding 
lines (Ching et al., 2002). Given this relationship, associa-
tion analysis is particularly powerful in maize, as the reso-
lution can be controlled by choice of association mapping 
panel: more elite germplasm for higher LD or more diverse 
and/or exotic germplasm for less LD. For example, signifi -
cant marker–trait associations can be identifi ed using elite 
lines with higher LD that will then require fewer mark-
ers, whereas more diverse lines with smaller linkage blocks 
(and thus lower LD) will require more markers but will get 
closer to the gene of interest.

Linkage disequilibrium can be greatly overestimated 
(especially at larger genomic distances) when sample sizes 
smaller than 50 individuals are used (Yan et al., 2009). 
Decay in LD also varies widely in diff erent chromosomal 
regions (Yan et al., 2009). This may be due to the great 
variation in recombination rates along the chromosomes, 
including a low recombination rate in centromeric regions 
and a high recombination rate within genic regions due 

to retrotransposon insertions (Dooner and He, 2008). Very 
extensive LD has been found in regions that have experi-
enced strong selective sweeps ( Jung et al., 2004; Tian et al., 
2009), such as is found around the Y1 gene, which controls 
carotenoid (and thus color) production in maize grains (Pal-
aisa et al., 2003). High levels of nucleotide diversity in and 
around this gene have been identifi ed in white maize germ-
plasm but not in modern yellow maize cultivars (Palaisa et 
al., 2003; Fu et al., 2010), which have been strongly selected 
for the health benefi ts of carotenoids for humans and ani-
mals (Mangelsdorf and Fraps, 1931). This selection pressure 
has caused the LD around the Y1 locus of yellow maize to 
span hundreds of kilobase pairs. Another sequenced region 
of chromosome 10 contains a long LD region covering 1 
Mbp, indicating a lack of recent recombination or a lack of 
sequence diversity perhaps due to selection, but the under-
lying genes have not been identifi ed (Tian et al., 2009). 
Based on genome-wide sequencing of 27 diverse inbred 
lines, more than 100 LD blocks of diff erent sizes (from 
thousands to millions of base pairs in length) have been 
identifi ed in the maize genome (Gore et al., 2009). Within 
these regions for some sets of germplasm, it may not be 
possible to identify markers very closely linked to the func-
tional mutation of target genes. For this reason, choice of 
appropriate germplasm to maximize the number of histori-
cal recombinations and mutation events (and thus reduce 
LD) within and around the gene of interest is critical for the 
success of association analysis.

In general, genetic linkage mapping studies identify 
linkage between a marker and the more distant functional 
DNA sequence by creating biparental mapping popula-
tions that have experienced only had a few generations 
of recombination since their creation, thereby increasing 
the probability that random markers will still be in LD 
with functional variants. However, linked markers identi-
fi ed in this manner may not be suitable for marker-assisted 
selection involving unrelated maize genotypes, since the 
linkage between the markers and the useful functional 
variants may have been broken during the recombina-
tion history of these unrelated genotypes. Random mark-
ers used for association mapping in maize must be much 
closer to the functional variants for a statistically signifi -
cant association to be detected due to LD breakdown in 
a diverse association mapping panel. Many generations of 
recombination separate unrelated lines in a diverse associ-
ation mapping panel (starting from their most recent com-
mon ancestor) compared to the lines in a genetic linkage 
mapping population (starting from the two lines crossed 
to generate them). The level of LD among the markers 
used to genotype the individuals in any given association 
mapping panel is an important index for a successful asso-
ciation study, as it will help to estimate the resolution and 
minimum number of markers needed for detecting sig-
nifi cant associations (Yan et al., 2009).
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Population Structure Matters 
for Association Mapping

Population structure can cause some allele frequencies to 
diff er signifi cantly between subpopulations, which can 
create unexpected LD between unlinked loci across the 
genome (Ersoz et al., 2009). For example, the d8 gene has 
been proposed to aff ect fl owering time and has been ana-
lyzed in three diff erent sets of germplasm (Thornsberry 
et al., 2001; Andersen et al., 2005; Camus-Kulandaivelu 
et al., 2006). When population structure was ignored, 
signifi cant associations were identifi ed in all three inde-
pendent studies. Flowering time is an important com-
ponent of adaptation that has been under high selection 
pressure during domestication and migration, and allele 
frequencies of genes related to this trait can thus vary in 
diff erent subpopulations adapted to contrasting latitudes. 
For example, 33 to 35% of the phenotypic variation in a 
diverse maize panel for male fl owering time and female 
fl owering time was found to be explained by population 
structure (Flint-Garcia et al., 2005). Therefore, if sub-
population structure is not accounted for, spurious (i.e., 
noncausative) associations may be detected between fl ow-
ering time and alleles at other loci that are all diff erentially 
distributed among subpopulations. Associations between 
d8 and fl owering time disappeared in some cases when the 
analysis was adjusted for population structure.

Nearly all traits of agronomic or economic importance 
have been intensively selected during extensive breeding 
eff orts over the past century. This has led to signifi cant 
population structure issues for all association analyses using 
modern maize germplasm that must be quantifi ed and the 
analysis adjusted so that results are not seriously compro-
mised (Ersoz et al., 2009). Neutral markers can be used 
to estimate population structure using traditional fi nger-
printing and diversity analyses. Several statistical methods 
have been used to control the eff ect of population struc-
ture in association analyses including genomic control 
(Devlin and Roeder, 1999; Mackay, and Powell, 2007), 
structured association (Pritchard et al., 2000; Falush et al., 
2003), principal components analysis (PCA) (Patterson 
et al., 2006; Price et al., 2006), nonmetric multidimen-
sional scaling (nMDS) (Zhu and Yu, 2009), and the unifi ed 
mixed-model approach (Flint-Garcia et al., 2005; Yu et al., 
2006; Zhang et al., 2010b). A two-stage dimension deter-
mination approach using both PCA and nMDS has been 
demonstrated to be the best approach to capture the major 
structure of association panels to maximize the rejection 
of false positives while maximizing the statistical power to 
identify real associations (Zhu and Yu, 2009).

Candidate Gene Strategy
Association analyses generally have a low statistical power 
for correlating rare alleles with phenotypic diff erences, yet 
these may be highly benefi cial variants that breeders are 

searching for. The candidate gene method of association 
analysis is a hypothesis-driven approach for complex trait 
dissection that aims to improve the odds of identifying 
the most important alleles. It involves genotyping or rese-
quencing those genes considered to have a high probability 
of association with the phenotype(s) of interest within the 
germplasm being tested. There are a number of diff erent 
approaches to implementing this strategy depending on the 
method used to identify the candidate gene and the level 
of confi dence the researcher has in the likelihood that a 
given gene is important for the target trait. In the past it 
was common to sequence the gene of interest as fully as 
possible across a limited number of diverse lines (typically 
24 to 48) to identify possible causal polymorphisms, such as 
SNPs causing amino acid changes or indels in untranslated 
or translated regions. The selected polymorphisms were 
then screened across a larger germplasm collection (of hun-
dreds or thousands of genotypes) using inexpensive PCR-
based SNP and/or indel genotyping assays (rather than 
sequencing) to confi rm the associations between genotype 
and phenotype. In another method, the partial or entire 
gene is sequenced in all individuals of a germplasm panel (of 
several hundred genotypes) to identify signifi cant associa-
tions, either with the causal polymorphism(s) or a polymor-
phism that is within LD distance to a causal polymorphism. 
Although this is a more expensive approach, it may identify 
rare polymorphisms that can be missed by the fi rst strat-
egy. Determining which method to use has generally been 
based on the level of funding and the amount of time avail-
able for each study. However, resequencing of the entire 
gene has the added advantage that it can directly identify 
the best haplotype for each target breeding purpose.

More than 20 studies of candidate gene association anal-
ysis in maize have been published to date (Table 1). These 
studies used candidate genes from well characterized and 
relatively simple metabolic pathways (Wilson et al., 2004; 
Harjes et al., 2008; Yan et al., 2010b) or those with exten-
sive prior evidence for the role of the candidate gene(s) in 
the control of the phenotype of interest. Such evidence may 
include information from map-based cloning studies (Salvi 
et al., 2007; Ducrocq et al., 2008; Zheng et al., 2008; Buck-
ler et al., 2009), information from closely related species (Li 
et al., 2010a, b), and information from QTL mapping stud-
ies and/or expression results (Krill et al., 2010). Expressed 
genes underlying major QTLs are used in association analy-
sis to confi rm in which gene(s) the causal polymorphisms 
can be found and to identify additional signifi cant polymor-
phisms. Vgt1 is a major QTL aff ecting fl owering time that 
was isolated via map-based cloning and confi rmed by asso-
ciation analysis (Salvi et al., 2007). Independent association 
analysis also discovered additional signifi cant associations 
that explained more of the phenotypic variation of the trait 
(Ducrocq et al., 2008; Buckler et al., 2009).
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Few QTLs aff ecting important traits in maize have yet 
been fully sequenced in multiple lines due to the complex-
ity of the maize genome and the diffi  culty of cloning QTLs. 
Using information from related species may help direct the 
search for the gene(s) underlying the QTL of interest. Rice 
has a reasonably small genome and the full sequence has been 
available to researchers for several years (Goff  et al., 2002), 
which has enabled a number of rice QTLs to be cloned, 
including QTLs contributing to yield and yield components 
(Xing and Zhang, 2010). Comparative genomics has revealed 

extensive macrosynteny and microsynteny between rice and 
maize genomes (Salse et al., 2004), and QTL controlling 
the same or similar traits have been identifi ed in ortholo-
gous regions of maize, rice, and sorghum [Sorghum bicolor (L.) 
Moench] (Paterson et al., 1995; Yan et al., 2004). Homol-
ogous genes can have similar functions in diff erent species 
(Kojima et al., 2002; Yano et al., 2000) or can infl uence the 
same trait but through diff erent functions (Cockram et al., 
2007). A cloned gene in rice may help to extract the ortholo-
gous sequence in maize and thereby identify candidate genes 

Table 1. Summary of candidate gene association studies in maize.

Populations 
Sample 

size 
Background 

markers 
Association 

method† Candidate genes Traits References 

Diverse inbred lines 92 141 LR+Q Dwarf8 Flowering time and plant 

and ear height

Thornsberry et al., 2001

Elite inbred lines 71 55 LR+Q, GLM–Q Dwarf8 Flowering time and plant 

height

Andersen et al., 2005

Diverse inbred lines 

and landraces

375 and 275 55 and 24 LR+Q, GLM+Q Dwarf8 Flowering time Camus-Kulandaivelu et al., 

2006

Diverse inbred lines 95 141 LR+Q, GLM+Q Vgt1 Flowering time Salvi et al., 2007

Diverse inbred lines 

and landraces

375 55 MLM Vgt1 Flowering time Ducrocq et al., 2008

Diverse inbred lines 282 89 plus 553 MLM Vgt1, ZmRap2.7 Flowering time Buckler et al., 2009

Elite inbred lines 75 – Case-control Y1 Endosperm color Palaisa et al., 2003

Diverse inbred lines 34 – stepwise multiple 

linear regression

CCoAOMT1, 

CCoAOMT2, AldOMT

Cell wall digestibility Guillet-Claude et al., 2004a

Diverse inbred lines 31 – ANOVA ZmPox3 Forage quality traits Guillet-Claude et al., 2004b

Diverse inbred lines 97 47 LR+Q ae1, bt2, sh1, sh2, sug-

ary1, waxy1

Kernel composition and 

starch pasting properties

Wilson et al., 2004

Diverse inbred lines 42 101 LR+Q,GLM–Q bm3 Forage quality traits Lübberstedt et al., 2005

Diverse inbred lines 86 141 LR+Q a1, c2, whp1 Maysin and chlorogenic 

acid content

Szalma et al., 2005

Diverse inbred lines 57 – Haplotype tree 

scanning

Sugary1 Sweet taste Tracy et al., 2006

Diverse inbred lines 32 101 LR+Q, GLM–Q PAL Forage quality traits Andersen et al., 2007

Diverse inbred lines 40 101 MLM, GLM+Q C4H, 4CL1, 4CL2, C3H, 

F5H, CAD

Forage quality traits Andersen et al., 2008

Diverse inbred lines 282 89 plus 553 MLM lcyE§ Carotenoid content Harjes et al., 2008

Elite lines 71 – unknown DGAT Oil content and composi-

tion

Zheng et al., 2008

Diverse inbred lines 281 89 plus 553 GLM+Q, MLM bx1 DIMBOA‡ Butrón et al., 2010

Diverse inbred lines 121 82 plus 884 MLM GS3 Kernel shape and weight Li et al., 2010a

Diverse inbred lines 121 82 plus 884 MLM GW2 Kernel shape and weight Li et al., 2010b

Diverse inbred lines 375 55 MLM, GLM+Q opaque2, CyPPDK1 Kernel quality traits Manicacci et al., 2009

Diverse inbred lines 277 89 plus 553 MLM bif2 Flowering time Pressoir et al., 2009

Diverse inbred lines 281

245

155

89 plus 553

50

82 plus 884

MLM crtRB1¶ Carotenoid content Yan et al., 2010b

Diverse inbred lines 282 89 plus 553 MLM IDH Central carbon metabolism Zhang et al., 2010

Diverse inbred lines 282 89 plus 553 MLM,GLM+Q

MLM+C

21 genes# Aluminum tolerance Krill et al., 2010

†+, considering population structure; –, not considering population structure; GLM, generalized linear model; LR, logistic regression; MLM, mixed linear model (Q+K model); 

Q, population structure.
‡DIMBOA, 2-4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one.
§lcye, lcyopene epsilon cyclase gene.
¶crtRB1, β-carotene hydroxylase gene.
#Malic enzyme (ME), iron-responsive transporter-like (FE), major facilitator superfamily antiporter (ANT1), ABC transporter-like protein (ABC), isocitrate lyase (ISL), amino acid 

permease AUX1 (AUX1), SAH hydrolase (SAHH), cytochrome P450 (P450), pectin methylesterase (PME), phosphatidylinositol 3-kinase (PI3K), germin2 (oxalate oxidase) 

(OO2), isocitrate dehydrogenase (IDH), fumerase (FUM), ZmALMT1 (AL1), ZmALMT2 (AL2), ZmALMT3 (AL3), ZmALMT5 (AL5), ZmALMT8 (AL8), ZmALMT9 (AL9), ZmALMT16 

(AL16), ZmASL (ASL).
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for maize association analysis studies. If the candidate gene 
infl uences the target function in maize, the polymorphism(s) 
underlying benefi cial changes in expression of the target 
trait can then be identifi ed. Clearly, caution must be applied 
when using this approach, as the causal polymorphism(s) in 
the maize gene may be completely diff erent to those found 
to be important for the same trait in rice (Li et al., 2010a). As 
long as the same gene plays an important role in the target 
trait in both species, this approach will still provide a valuable 
shortcut. However, many genes identifi ed in mutant screens 
in Arabidopsis spp. were not useful as candidates for maize 
fl owering time in the nested association mapping (NAM) 
panel of maize lines (Buckler et al., 2009).

Marker–trait associations have been identifi ed in 
maize based on information from the rice gene GS3 (Fan 
et al., 2006), which underlies a major QTL aff ecting rice 
grain size. This gene was cloned based on its map position 
in rice (Fan et al., 2006), and a common SNP occurring 
in the second exon resulting in a stop codon was identi-
fi ed as the causal polymorphism of larger rice grain size 
(Fan et al., 2006, 2009). The GS3 ortholog was cloned in 
maize and resequenced for association mapping analysis, 
and several polymorphisms signifi cantly associated with 
maize kernel size were identifi ed (Li et al., 2010a). None 
of the causal polymorphisms in maize were the same as 
the premature stop codon SNP found in rice and a similar 
trend was also observed in another gene, GW2 (Li et al., 
2010b), which implies that the orthlogous genes have dif-
ferent mechanisms in the two species (Li et al., 2010a, b).

Pathway-driven identifi cation and selection of candi-
date genes has proven to be a successful strategy in several 
association studies. One successful use of pathway informa-
tion to identify candidate genes focused on the production of 
provitamin A carotenoids, which are converted to vitamin 
A when metabolized by humans and animals. Biofortifi ca-
tion of food and feed with provitamin A is an economical 
approach to address the global challenge of vitamin A defi -
ciency. Gene-based marker-assisted selection (MAS) off ers 
an effi  cient and highly cost eff ective method for selection of 
high provitamin A maize breeding lines (Harjes et al., 2008). 
The genes for plant carotenoid synthesis have been elucidated 
primarily in model systems and with very few exceptions 
the pathway is identical in other plants, although the num-
ber of genes controlling each step in the reaction can vary 
(Vallabhaneni and Wurtzel, 2009). Combining this genetic 
knowledge with detailed information about the metabolism 
and catabolism of carotenoids in maize and other plant spe-
cies, two studies were performed to identify candidate genes 
for verifi cation via association analysis of high provitamin A 
levels in maize grain. One study found that the allelic vari-
ation at the lcyopene epsilon cyclase gene (lcye) could explain 
over half the phenotypic variation in provitamin A levels, 
(Harjes et al., 2008), while the second study confi rmed that 
alleles at β-carotene hydroxylases gene (crtRB1) explained 40% 

of the phenotypic variation in β-carotene levels (Yan et al., 
2010b). It is signifi cant and unexpected that haplotypes in 
just two genes could explain such a large proportion of the 
phenotypic variation in a trait showing continuous variation. 
This clearly begs the question whether similar assays can be 
developed for more complex traits such as pest and disease 
resistance or even drought tolerance and yield components.

Association mapping provides a means of identifying 
marker–trait associations using panels of germplasm but 
does not prove the function of the gene. Association map-
ping can be adversely aff ected by many factors, including 
population structure, small sample size, and low frequency 
of specifi c alleles, that may increase the detection of a false 
positive associations. It is very diffi  cult to say which sig-
nifi cance level is acceptable in a given association study. 
Alternatives include the recalibration of the probability 
based on the false discovery rate estimation and the use 
of bonferroni tests to avoid false positives. However, these 
methods are rarely used in candidate gene association stud-
ies. The use of stringent probability thresholds will reduce 
the danger of false positives, but this must be carefully bal-
anced to minimize the level of rejection of true positives 
caused by setting the thresholds too high. In a recent study, 
it was estimated that many genes aff ecting human height 
were not detected due to overly stringent signifi cance tests; 
this may have led to reducing the estimated heritability 
compared to what would be expected from conventional 
measurements of the trait (Yang et al., 2010).

Many other methods can be also used to confi rm 
that the identifi ed polymorphisms are indeed signifi -
cantly associated with the target trait. For example, a p 
value may be improved by adding additional individuals 
to the same panel or confi rmed in independent panels of 
germplasm thereby increasing the researcher’s confi dence 
in the marker–trait association. Or a completely diff er-
ent approach such as linkage analysis and/or expression 
studies can also be used. It is diffi  cult to defi ne a standard 
criterion for validation, but multiple lines of evidence 
are generally considered necessary for any solid conclu-
sion. Conclusive proof of gene function is only achieved 
through gene cloning and transgenic expression of that 
gene construct in appropriate genotypes, but for a plant 
breeder an acceptable level of confi dence in the function 
of a gene marker can be established by validation in a range 
of target breeding populations and/or near isogenic lines.

The Evolution from Candidate 
Gene-Based Association Analysis 
to Genome-Wide Association Study
Candidate gene-based association analysis, as mentioned 
above, is a hypothesis-driven approach that requires 
detailed prior knowledge of potential candidate genes. The 
historical emphasis on this approach in maize resulted from 
the low detection power of association analyses based on 
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random markers, which was particularly severe due to the 
especially rapid LD decay in maize (Tenaillon et al., 2001; 
Gore et al., 2009; Yan et al., 2009). The number of avail-
able maize SNP markers is dramatically increasing (http://
www.panzea.org/lit/data_sets.html#SNPs [verifi ed 8 Dec. 
2010]), so it should now be possible to identify markers 
covering every chromosomal region in the maize genome, 
ensuring that there are markers within and closely linked 
to genes contributing to complex target traits. These so-
called GWA studies have been widely used in human and 
animal systems (Altshuler et al., 2008; Hunter and Craw-
ford, 2008) and are already being used in some plant studies 
(Chan et al., 2009; Waugh et al., 2009; Atwell et al., 2010). 
Genome-wide association studies start with the genotypic 
characterization of a collection of individuals with a suffi  -
cient number of polymorphic markers to place one or a few 
markers in each LD block, which usually requires several 
hundred thousand SNPs or more. This density of geno-
typing can be achieved through array-based systems that 
can simultaneously genotype up to 1 million SNPs (Gupta 
et al., 2008; Yan et al., 2010a). Alternatively, the massive 
increase in sequencing capability and the dramatic decrease 
in unit costs provided by next generation sequencing tech-
nologies (Metzker, 2009) may be harnessed for the large-
scale genotyping requirements of GWA study.

The minimum number of markers needed for a success-
ful GWA study depends on the genome size and the rate 
of LD decay of the target germplasm. For example, in the 
model species Arabidopsis thaliana (L.) Heynh., it is estimated 
that 140,000 markers should provide a good coverage of the 
125 Mbp genome (Kim et al., 2007). However, in maize, it 
is estimated that more than 10 million markers are needed 
to cover the 2300 Mbp genome due to the combined eff ects 
of a much larger genome and a much more rapid LD decay 
in maize (Myles et al., 2009). However, there is currently no 
empirical validation of this target number of markers, and 
only resequencing via next generation sequencing may be 
able to provide this level of genotyping (Lupski et al., 2010) 
and only in species for which reference genomes are avail-
able. Moreover, the statistical analysis of resultant datasets 
will present a major challenge to currently available data-
handling pipelines. Using elite lines to construct the associa-
tion mapping panel should signifi cantly reduce the numbers 
of markers required for GWA studies in maize. In one exam-
ple, a gene associated with oleic acid content was identifi ed 
using genome scanning with only 8590 loci in 553 elite 
maize inbreds (Beló et al., 2008). In this sense, the developed 
maize SNP50 array (a high density maize SNP array con-
taining >56,000 SNPs from ~19,000 genes) will still be use-
ful for GWA studies for some particular traits (Martin, 2010). 
However, we knew at least 50 genes aff ecting the oil content 
in maize (Laurie et al., 2004), but only one could be detected 
using 8500 loci, which implies more markers are required to 
have the highest probability to detect all loci dealing with 

quantitative traits, especially from diverse sources. An alter-
native is the use of SNP haplotypes to replace single SNPs in 
GWA studies, which may signifi cantly reduce the number 
of markers required while also providing more QTL detec-
tion power. The construction of SNP haplotypes for maize 
breeding is still unclear, but the successful application of 
GWA studies in humans using haploytpes has already shown 
clear promise (Schaid, 2004).

By focusing on polymorphisms within the expressed 
region of all genes, marker density can be decreased sig-
nifi cantly without substantially decreasing the QTL detec-
tion power. This is because polymorphisms in gene regions 
should have a higher probability of being functionally 
important compared to randomly selected polymorphisms. 
This is supported by most studies on cloned QTL (Alonso-
Blanco et al., 2005; Salvi and Tuberosa, 2005). Thus, in the 
near term, GWA studies may focus on expressed regions 
using a gene-centric approach (Jorgenson and Witte, 2006; 
Ng et al., 2010) although this approach might miss some 
important functional polymorphisms such as cis-regulatory 
regions, which can be up to tens of kilobase pairs away from 
the target gene (Clark et al., 2006). The maize genome is 
predicted to have over 32,000 genes, based on analysis of the 
B73 genomic sequence (Schnable et al., 2009), which are 
being annotated with an average length of approximately 
1.4 kbp in sequencing studies of complementary DNA 
(cDNA) (Alexandrov et al., 2009; Soderlund et al., 2009). 
Thus, it will now be possible to identify the vast majority of 
the polymorphisms within each of these genes and provide 
a large and powerful set of gene-based markers for GWA 
studies. Assuming 50,000 genes in the maize genome and 
10 to 20 markers developed within the expressed regions 
of each gene, maize GWA studies will have suffi  cient QTL 
detection power if 500,000 to 1,000,000 well chosen mark-
ers are used. In this way, the use of markers developed from 
the expressed portion of the genome would allow a 10- to 
20-fold reduction in the necessary marker density com-
pared to the predicted requirement of 10 to 15 million ran-
dom markers (Myles et al., 2009).

Hundreds of GWA studies have been performed in 
human and animal systems that have identifi ed thousands 
of genes or SNP markers, most of which are associated 
with small eff ects on target traits (Altshuler et al., 2008; 
Hunter and Crawford, 2008; http://www.genome.gov/
gwastudies [verifi ed 6 Dec. 2010]). In addition, the aggre-
gate heritability of genes identifi ed by GWA studies and 
associated with a given trait is still quite low. In human 
and animal studies, GWA studies may be biased by two 
major interconnected factors: a dominance of SNPs with 
a lower minor allelic frequency (MAF) (<5%) and small 
population size (Manolio et al., 2009). In these cases, rare 
alleles (including those responsible for large eff ects on the 
target trait) are eff ectively hidden in the surveyed pop-
ulation due to the lack of statistical power to assign an 
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association when there are so few representatives carrying 
the rare alleles in that population (Manolio et al., 2009). 
In a recent study, even known causal SNPs have not been 
identifi ed in a GWA study using an array designed specifi -
cally for them (Lusis and Pajukanta, 2008).

It is likely that these same problems will also be major 
limitations for GWA studies in plants (Myles et al., 2009). 
In one study, 632 diverse maize lines were genotyped with 
1536 SNPs developed from 582 candidate genes (Yan et 
al., 2009). More than 36% of individual SNPs (Fig. 3a) 
and more than 55% of single gene-based haplotypes (Fig. 
3b) had a MAF of less than 10%. In the study involving 
crtRB1, the most favorable allele was very rare (MAF < 
5%) in temperate germplasm and totally absent in tropi-
cal and subtropical germplasm. This allele would not have 
been detected in a GWA study, and validation required 
the development of several linkage mapping populations 
segregating at this locus (Yan et al., 2010b). Thus, applying 

association analysis to targeted segregating biparental pop-
ulations is currently the major means of identifying and 
validating these rare but important alleles (Manenti et al., 
2009). Considering the lines commonly used for breeding 
may only contain a few haploytpes, association mapping 
should have the highest power to estimate the contribu-
tion of these haplotypes to the trait of interest.

Potential Solutions for the Major 
Constraints to Association Studies
One big advantage that genetic studies of plants have tra-
ditionally enjoyed is that populations of diff erent genetic 
structure can be created to serve specifi c purposes. A pow-
erful example is the NAM population consisting of 25 
recombinant inbred line (RIL) populations created by cross-
ing a diverse range of 25 important temperate and tropical 
breeding lines with one common, well characterized parent 
(B73) (Yu et al., 2008; Buckler et al., 2009; McMullen et al., 

Figure 3. (a) Single nucleotide polymorphism (SNP) frequency based on screening 632 diverse maize lines with 1229 SNPs. An aggregate 

total of 36% of the SNPs have a minor allele frequency (MAF) of 0.1 or less (data from Yan et al., 2009). (b) Haplotype frequency based 

on 538 loci in 632 diverse maize lines. An aggregate total of 55% of the haplotypes have a minor allelic frequency (MAF) of 0.1 or less 

(data from Yan et al., 2009).
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2009). Another useful approach is the multiparent advanced 
generation intercross (MAGIC) population, originally pro-
posed in animals (Mott et al., 2000) and now used in plants 
as well (Kover et al., 2009; Chintamanani et al., 2010). The 
NAM and MAGIC populations provide an ideal resource 
for gene identifi cation and validation in maize including 
the identifi cation of numerous small-eff ect QTL contribut-
ing to a target agronomic trait (Buckler et al., 2009; Kover 
et al., 2009). The NAM and MAGIC approaches may also 
boost the low detection power of traditional association 
mapping to detect rare alleles (Visscher, 2008). This may 
be critically important since genes having common vari-
ants with modest eff ects on complex traits may also have 
rare variants with large eff ects, which may be the preferred 
targets for plant breeders (Manolio et al., 2009).

Another challenge for GWA studies in maize is the 
large number of loci with small eff ects that contribute to 
most quantitative traits, including fl owering time (Buckler 
et al., 2009), oil content (Laurie et al., 2004), and drought 
tolerance (Messmer et al., 2009). Although this phenom-
enon is commonly reported in animal species, in some 
plant species such as rice, sorghum, wheat and Arabidopsis 
spp. (Mackay, 2009), a smaller number of genes, each with 
very large eff ect on a quantitative trait, has been reported 
for fl owering time and grain quality traits. The presence 
of large-eff ect QTL may be due to the inbreeding nature 
of some of these plant species. Animals and outcrossing 
plants such as maize may conform more to the infi ni-
tesimal model of quantitative inheritance (Buckler et al., 
2009; Atwell et al., 2010), in which there are an infi nite 
(or at least, very large) number of genes, each contributing 

a very small amount to a quantitative trait. This is a criti-
cally important issue as it may infer that maize researchers 
should take their lead from methodological advances in 
human and animal genetics rather than those in the Ara-
bidopsis and rice communities, although direct compari-
son with specifi c reports is often not possible since many 
human genetics studies are based on case-control studies.

The power of association studies is determined by the 
size of the experimental population, the magnitude of the 
target allele eff ect, the density of markers used, and the rate 
of LD decay between marker and target allele as well as 
errors in phenotyping and genotyping data and the desired 
resultant statistical signifi cance level (Gordon and Finch, 
2005). Increasing the number of individuals phenotyped 
has a much more substantial eff ect on the power of QTL 
detection (especially for small-eff ect loci) than increasing 
the density of genotyping (Long and Langley, 1999). As 
shown in Fig. 4, using a population with 500 individu-
als provides an 80% probability of detecting a gene that 
explains 3% or more of the phenotypic variation, while 
1500 individuals are needed to achieve the same probability 
of detection for a gene that only explains 1% of the varia-
tion of the target trait. Because only a few of the ~50 QTL 
identifi ed by NAM for fl owering time in maize explained 
more than 3% of the variation in this trait (Buckler et al., 
2009), populations of 500 genotypes clearly provide insuf-
fi cient QTL detection power to be of much value in GWA 
studies of agronomic traits in maize. Similar observations 
have also been made in quantitative trait studies of humans 
(Visscher, 2008). Much larger population sizes are there-
fore going to be needed for detection of most QTL in 

Figure 4. Effect on quantitative trait loci (QTL) detection power (proportion of real QTL detected) of increasing population size for QTL 

contributing 0.5 to 5.0% of the total phenotypic variation of the target trait. The simulation was performed using Genetic Power Calculator 

(GPC; Purcell et al., 2003) assuming the linkage disequilibrium (LD) of markers was equal to R2 = 0.8, minor allelic frequency (MAF) = 0.1, 

and sibling correlations = 0.1.
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maize, although smaller population sizes may be adequate 
for detection of alleles of large eff ect in self-pollinated plant 
species (Rostoks et al., 2006; Atwell et al., 2010). How-
ever, as has become standard practice in human genomics 
research (Purcell et al., 2003), plant genomics researchers 
should confi rm a high power of detection of their experi-
mental design before initiating a study, preferably in the 
region of 99% (Gordon and Finch, 2005).

Precise phenotyping is another key constraint for any 
marker–trait association analysis (Montes et al., 2007; Myles 
et al., 2009; Rafalski, 2010). In animal systems it is very 
diffi  cult to obtain replicated phenotypic measurements for 
each genotype, but in plants it is relative easy to gener-
ate pure breeding or homogenous lines for phenotyping in 
replicated trials across multiple environments and seasons. 
This approach has become very popular in plants as it sig-
nifi cantly increases the heritability of the resulting data. 
However, the cost and time required for such phenotyping, 
especially as recommended population sizes have increased, 
has become a rate limiting factor for the overall process. 
This has led to heavy investment into the development 
of high throughput and highly precise phenotyping tech-
niques (Finkel, 2009; Fernie and Schauer, 2009). For many 
important traits, effi  cient and cost eff ective phenotyping 
methods are still lacking. For example, it takes 1 h per 
sample to measure maize kernel carotenoid content using 
the high performance liquid chromatography (HPLC), at 
a cost of over US$50 (Yan et al., 2010b), and this is still 
the routine procedure for most provitamin A breeding pro-
grams. Other faster and/or cheaper methods are usually not 
suffi  ciently precise to measure the trait in a way that pro-
vides breeders with acceptable levels of genetic gain. This is 
clearly a compelling candidate for marker-assisted selection.

Although plant breeders have developed many rapid 
methods of scoring important agronomic traits including 
yield, these are often not suffi  ciently quantitative for fi ne 
mapping. Thus, traits of low heritability that are diffi  cult, 
time consuming, or expensive to accurately measure may be 
disaggregated into component traits, which are usually more 
highly heritable and easier to measure. Alternatively justifi -
cation for measuring a more expensive or time consuming 
component trait may be made to improve precision or heri-
tability of the overall mapping process. This is perhaps most 
extreme with metabolomic or biochemical phenotypes that 
are very expensive and diffi  cult to screen but often present 
the most promising surrogates for accurately measuring low 
heritability traits such as yield. Marker–trait association stud-
ies will always benefi t from a more precise measurement of 
the phenotype (Fernie and Schauer, 2009).

Clearly, experimental design must always be care-
fully optimized to maximize the power of the analysis. 
Nevertheless, there always remains a chance that statisti-
cally signifi cant associations are due to chance (Gordon and 
Finch, 2005) and it is highly diffi  cult to distinguish true 

associations from spurious associations (Atwell et al., 2010). 
For this reason, validation of candidate markers in indepen-
dent populations remains an essential element in the process 
despite its time consuming and expensive nature. However, 
once markers have been identifi ed that have been shown to 
be tightly and robustly linked to the target trait, they pro-
vide several magnitudes of return on investment through 
increased speed and cost effi  ciency of breeding programs.

How Can Association Mapping 
Help Crop Improvement?
Genes found to have signifi cant associations with target 
traits can be resequenced in a diverse panel of germplasm 
to identify causal mutations and the most favorable alleles 
for trait improvement and to develop simple PCR-based 
markers for MAS (Harjes et al., 2008; Yan et al., 2010b). 
Gene-based markers are more accurate than linked mark-
ers for the prediction of phenotype, since the marker–trait 
association will not be lost during segregation in the course 
of recurrent breeding selection cycles. Results from asso-
ciation analysis can be used to predict the best haplotype 
across one or multiple genes for optimum expression of 
the target trait. Using the crtRB1 gene as an example, six 
common haplotypes were identifi ed that conferred diff er-
ent levels of the target trait (Yan et al., 2010b), with an 
eightfold diff erence in the phenotype between the com-
mon “best” and “worst” haplotype. In theory, the opti-
mum haplotype can be reconstructed from any cross of 
two parents containing diff erent components of the desired 
haplotype. However, in practice, diff erent donors vary in 
their background eff ects, in terms of the eff ects of alleles 
at other loci that directly or indirectly infl uence the tar-
get trait. This signifi cantly infl uences the value of paren-
tal genotypes contributing the most favorable component 
haplotypes with respect to overall breeding effi  ciency. For-
tunately, association analysis can help to determine which 
one is the best donor, something that linkage analysis can-
not. For example, in the case of the crtRB1 gene (Yan et al., 
2010b), two segregating populations were used for QTL 
mapping of the target trait. Major QTL were mapped that 
explained similar percentages of phenotypic variation for 
the target trait in both populations, but it was not known 
if the parent containing the favorable alleles in each of the 
two populations would have had the same eff ect on the 
target traits in a diff erent genetic background. However, 
information from association analysis allowed us to deter-
mine that one of the parents was the best donor of the opti-
mum component haplotype for future breeding programs. 
Clearly this is dependent on the determination of multiple 
allele eff ects in association mapping analysis that possess 
the chosen component haplotype in diff erent backgrounds, 
enabling an estimation of context-dependent allele eff ect.

In the past, plant breeders have tended to focus on 
incremental improvement of a few key agronomic traits. 
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However, many breeders have dreamt of moving to an 
ideotype breeding approach, in which a theoretical ideal 
profi le of characters is defi ned and breeding strategies 
are designed to reach that goal. Generally, this strategy is 
not possible through conventional phenotypic selection, 
although partial success has been seen, such as development 
of a new plant type in rice (Khush, 2005). Many of the 
genes controlling a wide range of desirable agronomic traits 
have now been mapped in diverse sources of germplasm. 
If information on plant physiology, pathology, entomol-
ogy, and biochemistry is available to design the optimal 
plant ideotype, then theoretically molecular breeding 
off ers a mechanism for pyramiding these genes into a sin-
gle breeding line to create the ideal new cultivar (Peleman 
and van der Voort, 2003). This approach is already being 
pursued to breed higher yielding and more stress-tolerant 
rice (Takeda and Matsuoka, 2008; Xing and Zhang, 2010). 
However, the pyramiding of multiple genes with small 
eff ects from diverse genetic backgrounds into a single line 
still faces substantial practical challenges. For example, to 
fi nd one individual in a segregating population that carries 
all the target benefi cial alleles is increasingly diffi  cult as 
more and more traits are considered simultaneously. Even 
with disaggregated breeding schemes this requires thou-
sands of progeny to be generated and screened. In addition, 
the unpredictable implications of epistasis and genotype × 
environment eff ects further complicate the process as one 
attempts to consider more traits simultaneously.

An ideotype breeding scheme would need to be 
accomplished over several generations, but the complexity 
and duration of the breeding program will remain high. 
As with phenotypic based breeding, ideotype breeding 
schemes for traits controlled by a relatively small number 
of major genes remain more attractive and cost eff ective, 
but for many of the most agronomically important traits in 
maize such as yield and drought tolerance, the huge num-
ber of genes involved means that a design-led approach 
is still out of reach (Buckler et al., 2009). Nevertheless, 
marker-assisted recurrent selection (MARS) and genome-
wide selection (GWS) may provide a compromise approach 
for eff ective molecular breeding of these complex traits. In 
MARS the best lines in a segregating population are iden-
tifi ed based on phenotypic evaluation and then an index of 
marker profi les associated with those lines is constructed. 
The markers are chosen based on linkage with traits of 
interest in the segregating population, and the index is 
used in (typically three) subsequent cycles of marker-based 
selection ( Johnson, 2004). It has been proposed that only a 
small number of markers (20–40) associated with the target 
trait(s) would be needed (Koebner, 2003). This approach is 
currently being tested in over 20 breeding populations in 
the Drought Tolerant Maize for Africa project (DTMA; 
http://dtma.cimmyt.org [verifi ed 6 Dec. 2010]).

While MARS is essentially a linkage mapping-based 
approach applied to biparental breeding populations, GWS 
is an LD analysis-based approach that relies on estimating 
the eff ect of each marker without testing the signifi cance 
of its association with the target phenotype. Because GWS 
uses amalgamated populations from multiple parents for the 
simultaneous estimation of the phenotypic eff ect at many 
markers, it requires a much higher density of markers, espe-
cially when using a collection of germplasm with a rapid LD 
decay. The phenotypic eff ect of every marker is estimated 
using an appropriate model applied to phenotype data from 
one or more cycles of evaluating diverse germplasm. Then, 
in each cycle of GWS, all markers will be used to estimate 
the breeding value of each line, which will then determine 
the best lines to be selected for the next cycle (Meuwis-
sen et al., 2001; Bernardo and Yu, 2007). Generally, GWS 
and MARS use random markers that are linked to the tar-
get gene rather than within the actual gene. However, it 
is inevitable that maize molecular breeders will want to 
use the most informative markers from within genes for 
MARS and GWS, when they are available, to reduce the 
total number of markers required to achieve a high level 
of selective power. Similarly, it is expected that GWS and 
GWA studies will be combined in future maize improve-
ment strategies, using GWA studies with many markers 
to identify and empirically validate a subset of signifi cant 
markers for GWS. Frisch et al. (2010) have used transcrip-
tional data from a 46,000 oligonucleotide array to develop 
a prediction model for the value of parental maize lines 
in relation to the grain yield performance of their hybrid 
progeny. This study found that predictions based on 50 well 
chosen genes were as accurate as predictions based on 5000 
random genes. Similarly, when comparing the predictive 
value of random markers versus selected markers based on 
association analysis in a panel of related breeding lines, we 
have found that 250 of the best markers provided the same 
level of prediction as 1500 random markers (W. Wen et al., 
unpublished data, 2010).

Prospects and Priorities for Future 
Applications of Association Mapping 
in Maize Improvement
As discussed previously, in outcrossing species, very large 
populations are needed for gene discovery of quantitative 
traits for which each gene contributes very little to the phe-
notypic variation. In plant studies, particularly for traits that 
must be evaluated in replicated multilocational fi eld trials, 
it has not been possible for many public programs to work 
with populations beyond about 1000 individuals. Because 
the NAM population contains 5000 individuals across 25 
interrelated populations, it has required the collaboration of 
many research groups to handle the necessary phenotyping 
and data processing work. This type of study represents a 
shift to “big science” in crop genomics research that was 
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fi rst seen in human genomics research in the 1990s and that 
fueled a paradigm shift in the type of challenges addressed 
by public research and in turn the pharmaceutical industry 
(Psaty et al., 2007). Genome-wide association studies may 
provide the possibility for many small public research proj-
ects to participate in “big science” research, by enabling 
them to combine independent populations and studies. 
This type of aggregation of data sets into one GWA study 
has been successfully applied in wheat, a self-pollinated spe-
cies (Crossa et al., 2007), but it has not yet been validated 
in maize. However, since many independent maize asso-
ciation mapping panels of diff erent sizes and with diff erent 
genetic backgrounds have been developed and phenotyped 
for the same or similar traits (see Table 1), it would be an 
excellent use of existing resources to combine these into a 
single GWA study that should have a substantially higher 
power to detect QTL of small eff ect.

Meanwhile, the potential throughput of genotyp-
ing systems is rapidly increasing and unit costs are consis-
tently falling. This trend seems set to continue with the 
development of next generation sequencing techniques. 
Large-scale GWA studies of thousands of individuals using 
common and high-density markers is already a reality and 
screening of tens of thousands of individuals through rese-
quencing will soon also become a realistic option in several 
crop species including maize. These approaches will greatly 
help to increase our understanding of the genetic architec-
ture of maize complex traits and to begin the long journey 
toward true design-led molecular breeding. Meanwhile, all 
newly identifi ed trait-targeted markers have the potential 
to improve the effi  ciency of MAS, MARS, and GWS.

Unfortunately the facilitating technology for modern 
molecular breeding is still highly expensive and the opera-
tional reagents and services are still highly inaccessible for 
many developing countries (Tester and Langridge, 2010). 
Fortunately, some organizations are trying to fi ll this gap, for 
example, the Generation Challenge Programme (GCP) is 
establishing a Molecular Breeding Platform (MBP) (http://
wiki.cimmyt.org/confl uence/display/MBP/Home [veri-
fi ed 8 Dec. 2010]) for breeders across the world especially 
those in developing countries to facilitate their access to the 
best, most cost-eff ective molecular marker technologies. 
With the rapid development of next generation sequencing 
technologies it will soon be possible to genotype very large 
collections of germplasm by sequencing (so-called “geno-
typing by sequencing”) (Huang et al., 2009). Access to 
genotyping by sequencing services will allow maize breed-
ers in developing countries to bridge this technology transi-
tion much more readily than previous transitions.

Many research institutes and university departments in 
high-income countries and emerging economies (China, 
India, Mexico, Brazil, South Africa, etc.) have large, well-
funded agricultural research programs that are easily able 
to participate in large-scale gene identifi cation projects in 

maize. However, programs in most low-income countries 
(including the Consultative Group on International Agri-
cultural Research [CGIAR] centers) may be too small to 
establish their own gene identifi cation programs, but they 
can apply the knowledge gained from studies in advanced 
research organizations to their marker-based breeding 
programs. Sadly there is still an information gap for many 
developing country scientists who are unable to access sub-
scription-based journals or gain travel funds to attend inter-
national conferences. Collaborative programs such as those 
coordinated by the International Agricultural Research 
Institutes (IARIs) of CGIAR are working to help develop-
ing country partners to access up-to-date information and 
tailored technical support throughout all stages of establish-
ing and implementing molecular breeding programs.

It is clear that the initiatives described above are just a 
small beginning and we echo the appeal for a long-term stra-
tegic plan for global coordination of maize research that has 
recently been elaborated for rice (Zhang et al., 2008). This 
would include collating all the existing phenotypic data in a 
single publicly accessible database (such as the Maize Genetics 
and Genomics Database [http://www.maizegdb.org {veri-
fi ed 6 Dec. 2010}] and Gramene [http://www.gramene.org 
{verifi ed 6 Dec. 2010}]) and coordinating future phentoyp-
ing eff orts on a global level as well as developing cooperative 
genotyping programs to increase effi  ciency and maximize 
opportunities for integration. All results should be made 
publicly available in the shortest possible time, and training 
of potential users, particularly those from developing coun-
tries, should be performed within ongoing molecular breed-
ing programs as an essential component of all projects.

CONCLUSIONS
Association mapping off ers great potential to enhance maize 
genetic improvement. This will certainly be strengthened 
by the use of high throughput and cost eff ective next gen-
eration sequencing techniques that will enable GWA stud-
ies to become a popular and routine approach in maize. 
However, association mapping remains complementary to 
rather than a replacement for linkage mapping and other 
gene identifi cation and validation techniques. Moreover, the 
contrast between the large number of variants with small 
eff ects identifi ed by GWA studies versus the small number 
of genomic regions with large eff ects identifi ed by linkage 
mapping remains a challenge to our current understand-
ing of the genetic architecture of complex traits. Although, 
for practical applications, the integration of linkage map-
ping and association mapping approaches off ers substantial 
opportunity to resolve the individual constraints of each 
approach while synergizing their respective strengths. Nev-
ertheless, population structure remains a big limitation for 
association studies that requires careful choice of germplasm 
and the development of advanced statistical approaches. In 
addition, as the size of populations and the density of marker 
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screening rapidly increase, so does the probability of detect-
ing nonlinked (false) associations. These issues reinforce 
the need to independently validate candidate genes and/or 
markers in diverse genetic backgrounds (independent popu-
lations) to eliminate false positives. Inevitably, this brings us 
back to the need for large-scale cost-eff ective precision phe-
notyping, which remains a major logistical challenge and 
bottleneck to the development of molecular breeding pro-
grams. Nevertheless, signifi cant progress is being made in 
facilitating technologies for such phenotyping. Finally, there 
is undoubtedly an urgent need to bridge the gap between 
genomics researchers and molecular breeders in developed 
and developing countries, and particularly to share new 
knowledge faster and to enable genetic improvement gains 
(especially in Africa) to catch up with those in the leading 
producer countries. Emerging economies such as China and 
India, Brazil and Mexico, and South Africa have a major 
role in bridging this technological divide in maize breeding. 
If successful, millions of dollars of genomics research invest-
ment may fi nally benefi t the poorest people in the world.
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